IMPULSIVE LOADING ON REINFORCED CONCRETE SLABS

submitted for the degree of Doctor of Philosophy to the

Faculty of Engineering Department of Civil and Structural Engineering University of Sheffield by

N. Duranovic

February 1994

CONTENTS

Page

List of Figures	VII
List of Tables	X
List of Plates	XI

1. INTRODUCTION

2.

1.0	General Introduction							
1.1	Dynamic loading							
1.2	Impact and impulse loading in the field of Civil Engineering							
1.3	R.C. slabs under transient loading							
1.4	Present investigation							
LITE	LITERATURE SURVEY							
2.1	Impact and blast loading of R.C. slabs							
2.2	Material properties under high rates of strain	17						
	2.2.1 Concrete properties	21						
	2.2.1.1 Stress-strain diagram	21						
	2.2.1.2 Compressive strength	23						
	2.2.1.3 Tensile strength							
26								
	2.2.1.4 Poisson ratio	31						
	2.2.1.5 Energy absorption and modulus of rupture	31						
	2.2.2 Reinforcement properties	32						
2.3	Local response of R.C. slabs to impact and close range blast loading	34						
	2.3.1 Stress-wave propagation	34						
	2.3.2 Cracking	36						
	2.3.3 Penetration	38						
	2.3.4 Shear plug formation	38						
2.4	Overall response of R.C. slabs to impact and close range blast loading							

	2.4.1	Inertial loading	40		
	2.4.2	Resistance function	41		
2.5	Blast pressure characteristics				
	2.5.1	Introduction	45		
	2.5.2	Blast wave scaling and parameters	48		
	2.5.3	Interaction of shock waves with plane surfaces	49		
	2.5.4	Loading due to a short range explosion	51		
2.6	Modelling considerations				
	2.6.1	Dimensional analysis	54		
	2.6.2	Theory of modelling for structures exposed to impact and blast	55		
2.7	Some	theoretical approaches to the problem	57		
	2.7.1	Timoshenko (1951)	57		
	2.7.2	Goldsmith (1960)	57		
	2.7.3	Norris (1964)	58		
	2.7.4	Ezra (Johnson, 1972)	59		
	2.7.5	Popov (1976)	60		
	2.7.6	Symonds (Watson, 1991)	61		
2.8 Standard recomendations					
EXPE	RIMEN	NTAL TECHNIQUES			
3.0	Introd	luction	65		
3.1	Test sj	pecimen	66		
	3.1.1	Slab dimensions	66		
	3.1.2	Materials	68		
		3.1.2.1 Concrete	68		
		3.1.2.1.1 Microconcrete mix	69		
		3.1.2.1.2 Macroconcrete mix	73		
		3.1.2.2 Steel reinforcement	76		
		3.1.2.2.1 H.Y. grade 460 deformed reinforcement bars			
77					

3.

3.1.2.2.2 H.Y. BS4483 square reinforcement mesh 77

		3.1.3	Fabrication of the specimen	79
			3.1.3.1 Reinforcement mesh	79
			3.1.3.2 Preparation of moulds	80
			3.1.3.3 Concrete mixing, casting and curing	81
			3.1.3.4 Control specimen	81
			3.1.3.5 Preparations prior to testing	82
	3.2	Test in	strumentation	82
		3.2.1	Displacement transducers	82
		3.2.2	Digital storage oscilloscopes	83
		3.2.3	Strain gauges	84
		3.2.4	D.CBridge amplifaer - 359 - TA	86
		3.2.5	Microswitches	86
		3.2.6	Slotted opto-switches	87
		3.2.7	Universal counter timer	
8	87			
		3.2.8	D.C. Power supply	88
		3.2.9	Photec IV - 16mm High Speed Camera	
8	88			
		3.2.10	FS-10 Firing system	89
		3.2.11	Pressure transducers	90
		3.2.12	Hycam - K 2001 R - 16mm High Speed Camera	
Ģ	91			
	3.3	Test ar	rangements	92
		3.3.1	Support conditions	92
			3.3.1.1 Free supports	92
			3.3.1.2 Inner supports	93
			3.3.1.3 Fixed support	94
		3.3.2	Loading conditions	95

		3.3.2.1 Impact test	96
		3.3.2.2 Impulse test	98
		3.3.2.2.1 Test arena	98
		3.3.2.2.2 Explosive charge	99
		3.3.2.3 Static test	100
	3.3.3	Specimen response record	101
		3.3.3.1 Impact load measurements	102
		3.3.3.2 Hammer velocity measurements	
105			
		3.3.3.3 Blast pressure measurements	106
		3.3.3.4 Reinforcement strain measurements	107
		3.3.3.5 Deflection measurements	108
		3.3.3.6 High-speed filming	111
		3.3.3.7 After test damage assessment	113
	3.3.4	Test set up, procedure and event synchronisation	
113			
		3.3.4.1 Impact test	113
		3.3.4.2 Impulse test	116
	3.3.5	Experimental programme and variables	
117			
EXPE	ERIMEN	NTAL RESULTS	
4.0	Introd	luction	120
4.1	Impac	et tests	121
	4.1.1	1:2.5 Scale slabs	121
		4.1.1.1 Pressure bar record and velocity measurement	122
		4.1.1.2 Displacement record	124
		4.1.1.3 Reinforcement strain record	125
		4.1.1.4 High speed films	128
		4.1.1.5 Crack patterns and slab cross-sections	130
	4.1.2	1:1 Scale slabs	132

4.

			4.1.2.1 Pressure bar record and velocity measurement	133	
			4.1.2.2 Displacement record	135	
			4.1.2.3 Strain record	137	
			4.1.2.4 Crack pattern	138	
		4.1.3	Conclusions	139	
	4.2	Impul	se tests	140	
		4.2.1	1:2.5 Scale slabs	140	
			4.2.1.1 Blast pressure records	142	
			4.2.1.2 Displacement record	145	
			4.2.1.3 Reinforcement strain record	147	
			4.2.1.4 High speed films	149	
			4.2.1.5 Crack patterns and slab cross-sections	152	
		4.2.2	1:1 Scale slabs	154	
			4.2.2.1 Displacement record	154	
			4.2.2.2 Reinforcement strain record	156	
			4.2.2.3 Crack patterns	157	
		4.2.3	Conclusions	158	
5.	DISCUSSION				
	5.1	Introd	luction	160	
		5.1.1	Loading function	161	
			5.1.1.1 Calculation of blast loading function	161	
			5.1.1.2 Attenuation of the loading function and inertia	168	
		5.1.2	Dynamic character of material behaviour	169	
		5.1.3	Dual nature of the slab response		
	170				
	5.2	Local	response	171	
		5.2.1	Formation of an area of local response	172	
			5.2.1.1 High speed films	173	
			5.2.1.2 Stress wave theory approach	175	
		5.2.2	Development of cracking within the area of local response	181	

	5.2.3	Ultimate state conditions in the area of local response and failure					
183							
		5.2.3.1 Spalling, scabbing and perforation of the slab	183				
		5.2.3.2 Prediction of the damage	193				
	5.2.4	Load transfer from the area of local response to the rest of the slab	197				
5.3	Overa	ll response of the slab	199				
	5.3.1	Crack type analysis	200				
		5.3.1.1 Top surface cracks	200				
		5.3.1.2 Bottom surface cracks	202				
		5.3.1.3 Cross sectional cracks	205				
	5.3.2	Deflection analysis	205				
	5.3.3	Energy considerations due to close range explosion	217				
5.4	Conne	ection between local and flexural response					
217							
5.5	Times	sequence of events in the blast loading of R.C. slabs and	219				
5.6	Modelling		222				
	5.6.1	Local damage	222				
	5.6.2	Overall flexural damage					
222							
	5.6.3	Displacement record	223				
CON	CLUSIC	ONS					
6.1	Modelling		224				
6.2	Instru	mentation					
225							
6.3	Dynan	nic properties of materials and the blast loading function	226				
6.4	Local	response	227				
6.5	Overa	ll flexural response	230				
FUTU	JRE WO	DRK	232				
REFI	ERENCI	ES					
APPE	ENDICE	ES	ICES				

6.

7.

- Appendix A1 1:1 Scale impact test results
- Appendix A2 1:2.5 Scale impact test results
- Appendix A3 Impact tests High speed films
- Appendix B1 1:1 Scale impulse test results
- Appendix B2 1:2.5 Scale impulse test results
- Appendix B3 Impulse tests High speed films
- Appendix C1 Static test results
- Appendix D1 Staff list, Expenditure and Publications
- Appendix D2 Materials and equipment suppliers, and Summary of Equipment Specification
- Appendix D3 Inventory of major items of expenditure for the experimental programm Inventory of explosive stores provided by DRA and used in testing programm

SUMMARY

Reinforced concrete slabs were exposed to blast and impact loading in order to access modes of slab behaviour under these extreme dynamic loadings.

Two sizes of specimens were used and smaller slabs modelled the large slabs at 1: 2.5 scale.

Impact loads were produced by free falling hammer impacting coaxially onto a cylindrical bar of steel placed at rest in the centre of the slab. The steel bar was instrumented with electrical strain gauges which recorded the stress pulses produced by the impact.

Blast loads were produced by explosive charges made of Plastic Explosive PE4. In most cases the charge had the hemispherical shape and was placed centrally above the slab at close range standoffs i.e. up to 10 times the radius of the charge.

Additional blast tests were conducted in order to monitor the transient and spatial pressure distribution across the slab by using the pressure gauges placed in replica steel slab.

Transient deflections of the slabs under both types of load were obtained using long stroke displacement transducers, while transient strains in the steel reinforcement of the slabs were obtained using electrical resistance strain gauges bonded to the steel bars at mid span point.

A rotating prism high speed camera was used to film the damage on some of the small scale specimens at rates of up to 10,000 pictures per second.

The Hopkinson pressure bar tests were used to obtain dynamic characteristics of concretes of both scales at high rates of loading.

An analytical function of the spatial and transient blast pressure distribution based on detonation pressure of PE4 was established and is in close agreement to experimentally measured results.

The nature of the local and overall failure were discussed and time sequence of slab failure established for the case of explosive loading.

A crack pattern that occurs soon after the explosion in area of local failure has been established from the high speed films while the overall deflected shape was obtained from the displacement vs time records.

After test scab sizes and slab perforations were used to establish a relation between the slab thickness, amount of explosive and the slab damage in respect to scabbing and perforation.

The displacement records and the shape of after test damage provided the bases for comments on "gravity neglected - ultimate strength modelling law that was employed in this research.